NITRONIC 50 Stainless Steel

NITRONIC 50 Stainless Steel provides a combination of corrosion resistance and strength not found in any other commercial material available in its price range. This austenitic stainless has corrosion resistance greater than that provided by Types 316 and 316L, plus approximately twice the yield strength at room temperature. In addition, Armco NITRONIC 50 Stainless has very good mechanical properties at both elevated and sub-zero temperatures. And, unlike many austenitic stainless steels, NITRONIC 50 does not become magnetic when cold worked.

High Strength (HS) Bar Properties

NITRONIC 50 stainless bars also are available in a high-strength condition attained by special processing techniques. The superior strength of NITRONIC 50 HS produced by hot-rolling is size dependent, approaching that of annealed bars with sizes over 3” diameter. Because its high strength is produced by mill processing, welding operations cannot be performed on this material without loss of strength. High-strength bars produced by rotary forging-special practice may have somewhat reduced resistance to corrosion and sulfide stress cracking.

Also ask us about our full line of Nitronic 60: Bar, weld wire, sheet, plate and special pipe and tube!

Nominal Chemistry

<table>
<thead>
<tr>
<th></th>
<th>Cr</th>
<th>Ni</th>
<th>Mn</th>
<th>Mo</th>
<th>Si</th>
<th>N</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
<td>12.5</td>
<td>5</td>
<td>2.25</td>
<td>1.0 Max</td>
<td>0.3</td>
<td>Bal</td>
</tr>
</tbody>
</table>

Typical Mechanicals

<table>
<thead>
<tr>
<th>Properties</th>
<th>UTS (Ksi)</th>
<th>0.2% YS (Ksi)</th>
<th>Elon. (%)</th>
<th>R/A (%)</th>
<th>Hardness (Rockwell)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annealed</td>
<td>116</td>
<td>57</td>
<td>47</td>
<td>70</td>
<td>B 91</td>
</tr>
</tbody>
</table>

These are typical results, and should only be used as reference points. A normal high strength order parameter would be one of the following: % CW, a min. Hardness, Tensile or Tensile & Yield.

Specification levels for strain hardened bar

<table>
<thead>
<tr>
<th>HPA Strength Level</th>
<th>UTS (KSI) Min.</th>
<th>YS (KSI) Min.</th>
<th>Elon. (%) Min.</th>
<th>R/A (%) Min.</th>
<th>Dia Range (Inclusive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>110</td>
<td>90</td>
<td>35</td>
<td>55</td>
<td>0.125” - 4”</td>
</tr>
<tr>
<td>Level 2</td>
<td>135</td>
<td>105</td>
<td>20</td>
<td>50</td>
<td>0.125” - 4”</td>
</tr>
<tr>
<td>Level 3</td>
<td>160</td>
<td>130</td>
<td>15</td>
<td>45</td>
<td>0.125 ” - 3.5”</td>
</tr>
<tr>
<td>Level 4</td>
<td>180</td>
<td>145</td>
<td>12</td>
<td>45</td>
<td>0.062” - 2”</td>
</tr>
<tr>
<td>Level 5</td>
<td>200</td>
<td>180</td>
<td>10</td>
<td>45</td>
<td>0.062” - 1.5”</td>
</tr>
</tbody>
</table>

Questions?? Call (800)HPALLOY

Density 75°C 0.285 lb/in
Specific Gravity 7.88
Thermal Expansion Coefficient (70 to 200°F) 9.0X10^-6 in/in/Dep F
Electrical Resistivity (68°F) 492 Ohms/ cir mil ft
Tensile Modulus of Elasticity 28x10^6 psi
Torsional Modulus of Elasticity 10x10^6 psi

High Performance Alloys, Inc.
444 Wilson St.
P.O. Box 40
Tipton, IN 46072
Tel (765)675-8871
Fax (765)675-7051

Any questions or comments can also be sent via E-Mail to: JKirchner@HPAlloy.com
Welding

In addition to the improved corrosion resistance, NITRONIC 50 can be welded successfully using conventional welding processes that are normally employed with the austenitic stainless steels. As with most stainless steels, good weld joint properties can be obtained without the necessity of preheat or postweld annealing. The matching weld filler (NITRONIC 50 AWS E/ER 209) for Armco NITRONIC 50 Stainless Steel is similar to many of the regular austenitic stainless steel filler metals in that a small percentage of magnetic ferrite phase has been introduced to assure sound weld deposits. If the strength levels or superior corrosion resistance in the weld deposits are not required, other filler metals can be used to advantage because of reduced costs and/or ready availability.

The small quantity of the second phase usually produces a magnetic permeability value of approximately 1.2 in shielded metal-arc weld deposits. This corresponds to a ferrite number (FN) of approximately 6. Highly overalloyed Ni base fillers are suggested for applications requiring high resistance to pitting media or very low as-deposited magnetic permeability.

GTA Weld Joints

Gas tungsten arc weld joints have been fused successfully in several fiat-rolled gauges of Armco NITRONIC 50 stainless steel. The mechanical properties of welds in 1-1/4" (32.1 mm) thick plate have been determined using two weld processes that are normally employed in heavy section welding, namely, (a) shielded metal arc (SMA) or stick electrode welding and (b) gas metal arc (GMA) or MIG welding with the spray mode. Heat input is important in obtaining the most satisfactory weld joint. Narrow stringer beads rather than a wide "weave" technique should be used for highest weld ductility. Good shielding of the molten puddle is important to eliminate additional nitrogen from the atmosphere that could cause porosity. Both stringer beads and adequate shielding are normal factors in good stainless steel welding practice.

Resistance Welding

Although no direct resistance welding experience has been obtained with Armco NITRONIC 50 Stainless Steel, the similarity of the alloy to Armco NITRONIC 40 Stainless Steel suggests a good response to resistance spot welding and cross-wire welding techniques. The welding schedules outlined in the fabricating bulletin, "Welding Armco Stainless Steels," can be used as a guide to produce sound, high-strength joints in both annealed and cold-reduced sheet.

Average shear strength data for spot welded joints in Armco NITRONIC 40 Stainless Steel appear in the Product Data Bulletin, "Armco NITRONIC 40 Stainless Steel Sheet and Strip. Armco NITRONIC 50 Stainless Steel is expected to perform in a similar manner.

Conventional Weld Filler Metal

Armco NITRONIC 50 stainless can be readily welded with the more conventional austenitic weld - provided that the design of a particular application can accommodate the differences in strength and corrosion characteristics.
Corrosion Properties

Corrosion Resistance

Armco NITRONIC 50 Stainless Steel provides outstanding corrosion resistance - superior to Types 316, 316L, 317 and 317L in many media. For many applications the 1950 F (1066 C) annealed condition provides adequate corrosion resistance and a higher strength level. In very corrosive media or where material is to be used in the as-welded condition, the 2050 F (1121 C) annealed condition should be specified. High-Strength (HS) NITRONIC 50 bars are useful for applications such as shafting and bolting, but do not quite exhibit the corrosion resistance of the annealed conditions in all environments.

Intergranular Attack

The resistance to intergranular attack is excellent even when sensitized at 1250 F (675 C) for one hour to simulate the heat-affected zone of heavy weldments. Material annealed at 1950 F (1066 C) has very good resistance to intergranular attack for most applications. However, when thick sections are used in the as-welded condition in certain strongly corrosive media, the 2050 F (1121 C) condition gives optimum corrosion resistance.

Stress-Corrosion Cracking Resistance

In common with most stainless steels, under certain conditions, Armco NITRONIC 50 Stainless Steel may stress-corrosion crack in hot chloride environments. When tested in boiling 420/0 MgCl₂ solution, a very accelerated test, NITRONIC 50 Stainless Steel is between types 304 and 316 stainless steels in resistance to cracking. There is little difference in susceptibility to cracking whether in the annealed, high-strength (HS), or cold-drawn conditions.

Sulfide Stress Cracking

Both laboratory tests and field service experience have shown that Armco NITRONIC 50 Stainless Steel has excellent resistance to sulfide stress cracking in air conditions. NITRONIC 50 in both the annealed and high-strength (hot rolled) conditions has been included in the 1996 revision of NACE Standard MR-01-75 "Sulfide Stress Cracking Resistant Metallic Material for Oil Field Equipment," at hardness levels up to RC 35 maximum. The resistance to cracking in laboratory tests in synthetic sour-well solution.

Material in this bulletin has been reprinted from Armco Bulletin No S-45, other Armco sources, and HPA data.